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ABSTRACT: We propose a novel characterization method of randomly
branched polymers based on the geometrical property of such objects in
confined spaces. The central idea is that randomly branched polymers exhibit
a passing/clogging transition across the nanochannel as a function of the
channel size. This critical channel size depends on the degree of the
branching, whereby allowing the extraction of the branching information of
the molecule.

The concept of the confinement plays an important role in
various aspects of soft matter research ranging from

diverse industrial applications to our fundamental under-
standing of soft materials. A linear polymer in confined spaces
is a classical example, which provides one of the best
opportunities to illustrate the scaling concept in polymer
physics.1 In the present paper, we turn our attention to a more
complex object, randomly branched polymers, under confine-
ment. The source of the complexity arises from their nontrivial,
quenched connectivity, which introduces some unexpected
features, compared to the linear polymer counterpart, in the
narrow channel.
Some time ago, we analyzed the injection process of such a

branched object into a narrow channel by applying fluid flow.2,3

If the critical fluid current to achieve the injection depends on
the molecular parameters, such as the molecular weight and the
degree of the branching, one can characterize the molecule
from the measurement. However, it turned out that the critical
current depends neither on the molecular parameters nor on
the channel size. In this paper, we come back to our original
motivation and propose an alternative characterization method
using a finite-length channel.
We first summarize basic static and dynamical properties of

randomly branched polymers confined in a channel following
earlier works by emphasizing their unique properties in
comparison to linear polymers.2−6 The scaling formulas for
the free energy of confinement and diffusion coefficient are
given, which are expressed in terms of fundamental length
scales in the problem. Next, we look at the confinement process
of the branched object and point out that it is a progressive
process. We then propose a characterization method.
Let us recall the conformational properties of randomly
branched polymers. The spatial size, i.e., the radius of gyration,
of the ideal branched polymer with N monomers of size a is R0
≃ ab1/2(N/b)1/4 ≃ aN1/4b1/4, where b is the average number of

monomers between consecutive branching points.7,8 In good
solvent, the swelling occurs due to the excluded-volume effect,
which can be evaluated from the following Flory-type free
energy9,10
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where kBT is the thermal energy. Minimization of the above
free energy with respect to R leads to the equilibrium size
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One can check the crossover to the linear chain behavior R →
aN3/5 in the limit b → N.
Now, let us confine the branched polymer into a narrow

channel with the diameter D ≪ R. The polymer is stretched
along the channel axis with the length R∥ > R. Noting that the
available volume becomes ∼D2R∥, Flory free energy is then
modified as
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which yields the optimum extension as
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From the condition of the highest possible packing, ϕ ≃ 1 with
the volume fraction
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we find the minimum channel size4
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Here, we have purposely introduced the numerical coefficient c
through the definition Na3/(Dmin

2 R∥) = c for Dmin, which would
be useful for the concrete evaluation of the numerical values
later. The branched polymer cannot be fully squeezed into a
narrower channel with D < Dmin. The corresponding extension
LA is what we call the Ariadne length5
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Note that eq 4 can be arranged into the form
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As this expression shows, LA and Dmin are basic length scales
dictating the scaling properties of the confined branched
objects.
The Ariadne length corresponds to the maximum chemical
distance along the internal coordinate of the connectivity. In
the above argument, we realize the maximum stretching of the
branched polymer by confining it into the narrowest channel.
Therefore, rewriting eq 7 into the form
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indicates that our argument identifies the branched object to be
a polymeric fractal with the spectral dimension ds = 4/3.
Since the embedding space dimension d = 1 in the channel

geometry is lower than the spectral dimension, we encounter
what we call the strong conf inement regime.3,11,21 The equivalent
statement is that the space dimension of the channel geometry
(d = 1) is below the lower critical dimension dc = ds for the
object.12 In such a situation, it would be natural to introduce a
length scale ξ from the closed packed condition of blobs (with g
segments in each) a3g/ξ3 ≃ ϕ. Combining it with eq 5, we find
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where, as usual for the semidilute solution, the bulk statistic (eq
2)

ξ ≃ ag b1/2 1/10
(11)

is assumed inside the blob.1 Upon decreasing D, eq 11, and
hence eq 10 too, cease to be valid at g ≃ b ⇔ D ≃ D* ≃
b3/5Dmin, where the blob becomes small enough so that it only
probes the linear structure between the consecutive branching
points.5,6 Then eq 11 should be modified to the linear chain
statistics

ξ ≃ ag 3/5
(12)

so that
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On applying kBT per blob ansatz, the free energy ΔF for
confining the branched object can be obtained as
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One can check ΔF(D*) ≃ (N/b)kBT and ΔF(Dmin) ≃ NkBT.
Notice that ΔF increases faster than linear with N at fixed D,
which is a general feature in the strong confinement regime.
The generalized version with the spectral dimension ds is
presented in refs 3 and 13.
Our blob picture indicates the following dynamical property of
the confined branched object. As usual in the semidilute
solution, we assume that the hydrodynamic screening length
also scales as ξ so that each blob contributes the Stokes friction
∼ η0ξ to its translational motion.1 Using eqs 11/ 12, we obtain
the scaling formulas for the diffusion coefficient of the
confined branched object in channel
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Notice that by setting b = N we recover the classical results
for linear polymers R∥ ≃ a(a/D)2/3N, Dmin ≃ a, LA ≃ aN, R* ≃
aN3/5, ξ ≃ D, ΔF/kBT ≃ (a/D)5/3N, and ≃ (kBT/η0aN)(D/
a)2/3.
Next, we consider the process of the confinement: only a part
of the whole chain with n (<N) monomers is confined in the
channel. The extension of the partially confined part with n
monomers in the channel is denoted as l (<R∥) (Figure 1).
From eq 4 with the replacement (R∥, N) → (l,n), we find the

number n of monomers in confinement as a function of D and l
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The volume fraction of this partially confined region is
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As we have already argued in refs 2 and 3, the confinement is a
progressive process, i.e., ϕ increases with l, which is again a
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hallmark of the strong confinement regime. In the limit of the
complete confinement l → R∥, we recover eq 5.
In refs 2 and 3, we have analyzed the fluid flow (or pressure

drop) driven suction process of the branched object into the
channel, where two competing factors, i.e., the osmotic force
due to the confinement and the hydrodynamic drag force, are
calculated in line with the argument given above. The main
result is that the critical flow current Jc for the injection is
independent of both N and D, and its scaling structure is given
by

η
≃J

k T
c

B

0 (18)

which is the same as that for the linear chain.6,14,15 The
underlying physics for this counter-intuitive result are discussed
in refs 2 and 3.
From a practical viewpoint, the above result eq 18 on the
critical injection current is disappointing since it indicates no
utility to characterize the probed branched molecules. This has
led us to propose an alternative characterization method using
the f inite length channel. Now consider the confinement of
branched polymers into a narrow channel with the length L.
We ask the following question: Given the channel geometry D
and L, can the branched polymer with molecular architecture N
and b pass through the channel? Here, the minimum size Dmin
and the Ariadne length LA come into the problem as relevant
length scales.
The critical channel length Lc can be derived from the

condition ϕ(D, Lc) = c as
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From this, we can construct the following diagram (Figure
2). In regimes P/P′, the branched object can pass through the
channel. The regimes P and P′ correspond to the short and
long channels, respectively; in the latter, the complete
confinement is realized. In the regime C, however, it cannot
pass; the dense pack limit ϕ → c is reached during the
confinement process, which results in the molecular clogging.
To see the origin of the passing/clogging transition, it is

instructive to compare the above results with the linear chain
counterparts. By setting b ≃ n in eqs 16 and 17, one finds
n(D,l) ≃ (l/a)(D/a)2/3 and ϕ(D,l) ≃ (a/D)4/3. Because of the
independence of ϕ on l, there is no critical length Lc for the
passage. The filtration border is just given by the trivial
geometrical condition D = Dmin ≃ a. In contrast, branched
polymers allow one to exploit their unique property in channels

to probe their molecular characteristics, the principle of which
is outlined below.
Assume that we have a solution of branched polymers, which is
monodispersed, but with unknown molecular parameters N and
b. We would like to extract these parameters, in particular b, the
branching information.
The measurement can be performed by fixing either (i)

channel cross-sectional size D or (ii) channel length L. Let us
first consider the case (i). For a sufficiently short channel, the
molecules can pass through it (regime P). Upon increasing the
channel length, the molecular clogging may occur depending
on the channel size; i.e., the transition to the regime C occurs at
L = Lc, if D < Dmin. By inverting the relation eq 19 and using
experimentally determined threshold value Lc, we can deduce
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where c ≃ 0.5 is a numerical coefficient (see the comment
below eq 6). On the other hand, if the channel is not narrow
enough, we do not expect the clogging; upon increasing L, we
just enter the regime P′, where the entire molecule can be
confined during the passage.
In the case (ii), we fix the channel length L and allow the

channel cross-sectional size D to vary. Such a tunable control is
possible in a soft elastomeric channel by applying the
mechanical compressional force.16 Since the channel length L
is fixed, it is convenient to rewrite eq 19 as the threshold
condition for the channel cross-sectional size

= =−⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟D a

L
ab

c D
L
Lc

1/6
5/6

min
A

1/6

(21)

Upon decreasing D, we expect the transition from the
passing regime P/P′ to the clogging regime C. If N is large
enough and we choose the short length channel in such a way
as L < LA (see eq 7), the threshold channel size Dc is given by
eq 21. By inverting the relation eq 21 and using the
experimentally determined threshold value Dc, we can deduce
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On the other hand, for sufficiently long channels L > LA, the
threshold is given by the minimum diameter Dc = Dmin (eq 6).
Combining the results of measurements in two distinct

Figure 1. Sketches of the partially confined branched object. The
density inside the channel becomes higher with the process of the
confinement.

Figure 2. Diagram of the passing−clogging transition. The border
between regimes P and C is given by eq 19. The dashed curve between
regimes P and P′ is given by eq 8
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transition regimes, i.e., (P → C) and (P′ → C), one can obtain
both molecular parameters b and N.
From eqs 6 and 7, one can estimate (with c ∼ 0.5), for

instance, Dmin ∼ 5a, LA ∼ 7000a for N ∼ 105, b ∼ 10 and Dmin
∼ 3a, LA ∼ 200a for N ∼ 103, b ∼ 5. The very weak
dependence of Dmin on molecular parameters (eq 6) may be
lucky; it enables one to cover a wide range of molecular
parameters by a slight tuning of the channel diameter,
indicating the feasibility of the protocol (ii). For the efficient
operation, one needs to apply the driving force (pressure
gradient or some other means) above the threshold given by eq
18, which ensures the smooth entry into the channel.
Despite a multitude of research activity on linear polymers in
confined spaces, its extension to more complex polymers is not
abundant yet. In this paper, we have summarized the static and
dynamical scaling properties of randomly branched polymers
confined in a channel. These are more complex than the linear
polymer counterparts due to their quenched fractal connectivity
characterized by the nontrivial spectral dimension ds = 4/3.17

We repeat once more that the facts Dmin ≫ a and LA ≪ aN are
the manifestation of the nontrivial connectivity, and these
quantities Dmin and LA as basic length scales are indeed two
sides of the same coin (eq 7).
Emphasis has been put on their peculiar properties arising

from the fact that the channel geometry is below their lower
critical dimension; i.e., we are dealing with the strong
confinement regime. We have provided the scaling formulas
for the confinement free energy (eq 14) and diffusion
coefficients (eq 15), demonstrating their nontrivial dependence
on N, and their compact expressions in terms of Dmin. There are
some recent numerical19 and experimental20 attempts on
related issues. Here, we once more repeat that the (statistical)
connectivity pattern is crucial, according to which the
molecules should be properly classified. A principle connectivity
feature of the randomly branched polymer lies in its treelike
structure, i.e., no internal loop (cycle), and more quantitatively,
as we have already seen, it is characterized by the spectral
dimension ds = 4/3. If, instead, the non-negligible fraction of
the loops is formed during the synthesis, the resultant branched
objects are more like the cross-linked micro- or nanogels,
whose elastic modulus is much higher than the randomly
branched polymer and is controlled by the mesh size. We thus
expect that the critical injection current of such cross-linked
objects into long channels increases with the molecular weight
(N) and decreases with the subchain length (b), which may
explain the experimental result in ref 20. It is clear that the
dendrimers, studied in ref 19, are also quite different from our
branched polymers. We hope that the current discussion will
activate interest in this fascinating field of the complex
polymers in confined spaces.
Finally, by exploiting exotic (but fundamental) properties of

the branched objects in narrow channels, we have proposed a
novel method for their characterization using the finite length
channel. We hope that our prediction and the feasibility of the
method to be tested in the near future.
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(14) Beǵuin, L.; Grassl, B.; Brochard-Wyart, F.; Rakib, M.; Duval, H.
Soft Matter 2011, 7, 96.
(15) Ledesma-Aguilar, R.; Sakaue, T.; Yeomans, J. M. Soft Matter
2012, 8, 1884; ibid 2012, 8, 4306.
(16) Huh, D.; et al. Nat. Mater. 2007, 6, 424.
(17) There is also another class of the randomly branched polymer,
in which the branching points fluctuate and rearrange, i.e., the
annealed branched polymer. See ref 18.
(18) Gutin, A. M.; Grosberg, A. Y.; Shakhnovich, E. I. Macromolecules
1993, 26, 1293.
(19) Nikoubashman, A.; Likos, C. J. Chem. Phys. 2010, 133, 074901.
(20) Li, L.; He, C.; He, W.; Wu, C. Macromolecules 2012, 45, 7583.
(21) If we make a similar calculation for a slit (d = 2 larger than ds =
4/3), we are not in the strong confinment regime. It would be
interesting in the future to compare the two cases.

ACS Macro Letters Letter

dx.doi.org/10.1021/mz400598t | ACS Macro Lett. 2014, 3, 194−197197

mailto:sakaue@phys.kyushu-u.ac.jp
mailto:francoise.brochard@curie.fr

